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DETERMINATION OF ELASTIC STRESSES IN GAS-TURBINE DISKS

By S. S. Maxsox

SUMMARY

A method is presented for the caleulation of elastic stresses
in symmetrical disks typical of those of a high-temperature gas
furbine. The method is essentially a finite-difference solution
of the equilibrium and compatibility equations for elastic
stresses in a symmetrical disk. Account can be taken of poini-
to-point variations in disk thickness, in temperature, in elastic
modulus, in coefficient of thermal expansion, in material density,
and in Poisson’s ratio. No numerical integration or trial-and-
error procedures are involred and the computations can be per-
formed in rapid and routine fashion by nontechnical computers
with little engineering supervision. Checks on problems for
which exact mathematical solutions are known indicate that the
method yields results of high accuracy.

Illustrative examples are presented to show the manner of
treating solid disks, disks with central holes, and disks con-
structed either of a single material or of two or more welded
materials. The effect of shrink fitting 1s taken into account by
a very simple device.

INTRODUCTION

One of the problems in the design of gas turbines is the
determination of the stresses in the turbine disk under
operating conditions. Calculation of the elastic-stress dis-
tribution is a first step in the determination of the true stress
distribution. This stress distribution is based on the assump-
tion of linearity of stress with strain and differs from the true
stress distributions, which may contain stresses beyond the
proportional elastic limit of the material.

The equations for the elastic-stress distribution in sym-
metrical disks are well known. Their solution may, however,
offer considerable difficulty. One difficulty encountered in
caleulation of the operating stresses in disks with high-
temperature gradients is that the physieal properties of the
materials, such as elastic modulus, Poisson’s ratio, and
coefficient of thermal expansion, vary with the temperature
and therefore have a different value at each location in the
disk. In addition, the thickness of the turbine disk varies
from radius to radius. If the disk consists of portions of
different materials welded to each other, the density may
vary from one section to the other. Shrink fitting and weld-
ing of the component parts at elevated temperatures also
introduce special stress problems. Attempts to find complete
analytical solutions for the stress problems that take into

account shrink fitiing and point-to-point variation of the
physical properties and of the disk thickness result in math-
ematical complexities; approximate solutions are therefore
usually found by numerical methods.

Thompson in reference 1 gives a numerical approach to the
turbine-disk problem that takes into account point-to-point
variation in disk thickness and in all physical properties
except Poisson’s ratio. A method capable of easily account-
ing for shrink fitting and for the variation in Poisson’s ratio
as well as in the other properties was developed in 1345 at
the NACA C(leveland laboratory and is presented in the
analytical section herein. The method is essentially a finite-
difference solution of the differential equations of stress in a
rotating disk and incorporates several advantageous features
uncommon to other forms of solution. For example, numer-
ical integration and trial-and-error processes have been
completely avoided, which makes it possible for nontechnical
computers to carry through the entire solution rapidly and
with little engineering supervision.

In the second section of this report, illustrative examples
are presented to show the manner of treating a solid disk and
a disk with a central hole for application to a gas turbine.
The examples are self-explanatory and may be used as a
guide for the solution of turbine-disk problems without
reference to the analytical section of the report in which the
basis for the solution is derived.

The method also has applicability to the study of stresses
in rotatincr disks other than that in the gas turbine. It has
in which the only comphcatmg factor 1S varlable disk thick-
ness. For such application the main advantages of the
method are the routine nature of the calculation, the rapidity
with which the calculations can be made, and the accuracy
of the final results.

ANALYSIS

SYMBOLS

The following symbols are used:
point midway between nth and (n—1)st point statlons
elastic modulus of disk material, (Ib/sq in.)
axial thickness of disk, (in.)
radial distance, (in.)
radial displacement of any point on disk as disk
passes from unstressed to stressed condition
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a coefficient, of thermal expansion between actual tem-
perature and temperature at which there is zero
thermal stress, (in./(in.}(°F))

AT  temperature increment above that at which there is
zero thermal stress

. radial strain, (in./in.)

€ tangential strain, (in./in.}

7 Poisson’s ratio

P mass density of disk material, ((Ib){sec?)/in.*).
o radial stress, (Ib/sq in.)

ay tangential stress, (Ib/sq in.)

w angular velocity of disk, (radians/sec)

The following supplementary subsecripts are used for
denoting values of the preceding symbols in connection with
the finite-difference solution:

7 nth point station
n—-1 (n—1)st point station .
a station at the smallest radlus of the disk considered

(For a disk with a central hole, this station is taken
at the radius of the central hole; for asolid disk,
this station is taken at a radius of about 5 percent of
rim radius.)

b rim of disk or base of blades .

Example of the use of double subscript:

o.21 radial stress ¢, at station n-1

The following supplementary symbols denote combina-
tions of the foregoing symbols arising in the analysis:
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ASSUMPTIONS

The assumptions are made that stress is proportional {o
strain and that the disk material is completely elastic at the
stress distribution induced by the centrifugal and thermal
effects. All variables of material properties and operating
conditions are assumed to be symmetrical about the axis of
rotation. Axial stresses are neglected and at any radius the
radial and tangential stresses are assumed to be uniform
gcross the thickness of the disk. Temperatures are taken in
the central plane perpendicular to the axis of the disk.

OUTLINE OF METHOD

In a thin rotating disk of variable thickness, the state of
stress at any radius can be completely dcﬁned by the two
principal stresses, the radial and tangential stresses ¢, and ¢,
respectively. Two equations are therefore necessary to deter-
mine the two unknown stresses. The first of these equations
can be obtained from the conditions of equilibrium of an
element of the disk; the second, from the compatibility con-
ditions, which are mathematical statements of the interrela-
tion between the radial and tangential strains in a sym-
mefrical disk.

The equilibrium and compatibility equations result in
differential form defining relations between the stresses at
radius 7 and those at a radius infinitesimally removed from r.
Except for some special cases, the solutions of these equations
are difficult to obtain. In order to facilitate solution, the
differential equations are rewritten in fAnite-difference form
relating the stresses at radius r with those at a radius finitely
removed from r. By means of the finite-difference equations,
the stresses at an arbitrary finite number of stations along
the disk radius are expressed in terms of the stresses at a
single reference station near the center of the disk. For a
disk with a central hole the reference station is chosen at the
inside radius, where the radial stress is zero; hence, the
stresses at all st,at.ions in the disk are expressed i_n terms of the
single unknown, the tangential stress at this station. For a
solid disk, the reference station is chosen at a point near the
center of the disk (at a radius of about 5 percent of the disk
radius). In this region the radial and tangential stresses can
be assumed to be approximately equal; again, therefore, the
stresses at all stations are expressed in terms of a single
unknown. The unknown can then be determined by the
boundary conditions at the rim of the disk where the radial
stress_ is equal to the centrifugal blade loading. When the
radial stress at the rim, expressed in terms of the tangential
stress at the reference station, is equated to the blade loading,
the tangential stress at the reference station is evaluated.
After the tangential stress at the reference station has been
determined, all the other stresses, expressed in terms of this
stress, can be evaluated.
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DIFFERENTIAL EQUATIONS

The equilibrium equation, as given in reference 2 (p. 374),
using the notation of this paper, is

3(2 (rho;)—ho+ pothr*=0 (1)

The compatibility relation is obtained by elimination of u
from the stress-strain displacement equations

_@_Uﬂ'—#al 1 -
==k +eaAT (2)
e;=%=2TE—#—UT+aAT (3)

Equation (3) is subtracted from equation (2) to eliminate u,

du u_(14p)(o,—0)

I E (4)
or
rdu—udr _ (14p)(e,— o))
rdr E (5)
But
rdu—udr d [u
2dr  dr <_r> (6)

Therefore, by equations (3), (5), and (6),
d(e\_d(po\, d o (AFe)le:—0d -
dr \E>—dr< E>+dr («AT) =0 (7)

Equations (1) and (7), together with a knowledge of the
boundary conditions, are sufficient to solve for the two
unknowns o, and ¢,. Because p, E, g, @, AT, and h are, in
general, functions of the radius r, the equations cannot
readily be solved in their differential form; a finite-difference
solution was therefore derived.

FINITE-DIFFERENCE EQUATIONS

The translation of differential equations into finite-
difference form to facilitate solution is common in engineering
practice. The method has, in fact, been applied in limited
fashion to the solution of the steam-turbine disk problem
(reference 2, pp. 398—400). This application neglects, how-
ever, the point-to-point variation in physieal properties, and
therefore no application to the gas-turbine disk, in which
there is appreciable variation in properties from hub to rim,
is made. In addition, the solution of the equations involves
an interpolation procedure, the elimination of which could
considerably reduce the amount of ealculation necessary for
a solution and increase the accuracy of the final results.

A number of discrete point stations are chosen along the
disk radius as shown in figure 1 (a). Ifitis assumed that the
stress distribution in the disk has already been determined,
all quantities appearing in equations (1) and (7) are known
at each of the point stations and the values of corresponding
guantities at the point A midway between the nth and (n—1)st
point stations can be approximately determined. For
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(e} Location of point stations.
(8) Value of typical function midway between point stations n and n-1.

Ficure 1.—Sketches used to derive finite-difference equations for stresses in symmetrical
rotating disk.

example, in the plot of rhe, against r (fig. 1 (b)), the radius at
point A is expressed as

1
TA=§ (rn-—l_:—rg)
the value of rho, is
(rho'r):t z% (rn—lhn—lo'r,n—1+ rnhnqr,n)
and the slope of the curve at point A, which is approximately
equal to the slope of the chord joining points » and n-1, is

defined as

rnﬁ nOrn™— rn—lﬁ n—1%r,a-1

% (rhe)a= ——
In a similar way, the values of each of the other variables
entering into the equations can be evaluated for point A.
If the evaluations are correct, the quantities at A must satisfy
equations (1) and (7). These equations therefore become, in
finite-difference form

Tnh no'r.n_rn~lhn—1<7r,u—l _hna't,n'lr_hn—lo't,n—l._]_
Pa— Ty 2 !

2
% (Pn}lnrnz_’rpn—lhﬂ—lrg—lz) =0 (8)
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and
Otin__ Ftn—-t MnOrn_ Mn-19rn-1 . L
“1n En—l . En 7E’z—1 +aﬁATn_an—lAT o
Po—Tp-1 Pn—Tn- Ta—Tn—1
_]; <1+/-‘,n)(0'1.7n_0'l,n) (1+#n—1)<ar!n—1_5z,n—1} _
2]: E.ry + By iray =0 ®
which reduce to
Cno'r.n"'Dna't,n: nar,n—1+GnUz,7z—1_Hn (10)

and
O,nO'r.n"D,no'z,n:F,no'r,n—l_ G’ngz,n—-l'["H/n (1 1)

SOLUTION OF FINITE-DIFFERENCE EQUATIONS

Equations (10) and (11) represent two equations from
which ¢, , and ¢,,, can be expressed in terms of ¢, ,—; and
o, -1 If the linear nature of the equations and the possi-
bility of successive application of the equations to proceed
from one station to the next are considered, the stresses at
any station can ultimately be expressed in linear terms of
the stresses at any other station. I& will be convenient to
express the stresses at all stations in terms of the stresses at
the station ¢. At this station, the unknown value is the
tangential stress o;,; hence, the stresses at station n are
expressed in the linear terms

Ur,n=Ar,n7t,a+Br,n

Tin=An01ctBin (12a)
and those at station n—1 in the form
Gr,n—1 =Ar,n—10'z,a+ Br,n—l
G't.n~1=At,n—la'l,a+Bt,n—1 (12b)

where the coefficients A, ., Bra, Aoy, and By, are as yet to
be determined.

The substitution of equations (12a) and (12b) into equa-
tions (10) and (11) and the separation of the terms with and
without o, result in the equations

(CnAr,n_DnAz,n_‘FnAr.n-—l_ aniz.n—”l) at,a+ o
(OnBr,n_DILBt,vz—FnBr,n-l; G;;Bz,.nd‘{_Hn) =O (13)
and
(OInAr,n*D,nAt,n"'F,nAr.n—l'{‘ G,nAt,n—l) O't,a+
(O,nBir.rn'_-D,nBt,n"'F/nBr,n—l+ GlnBt.n—l’_H/n) =0
(14)
The stress o, is really arbitrary as far as equations (13)
and (14) are concerned because it depends upon the boundary
conditions and not on the equations of elasticity from which
equations {13) and (14) were derived; that is, by a suitable
choice of the factors that determine boundary conditions,

such as blade loading and shrink fit, ¢,, can be set at any
desired value without invalidating in any way the equations
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of elasticity (1) and (7), or their ultimate finite-difference
forms in equations (13) and (14). If an equation in the form
cx -+ d = 0 is to be true for all values of , the coefficients
¢ and d both must be zero. Because equations (13) and (14)
are to be true, mdependent of the value of o4, the coefll-
cients of ¢,, must be zero, and the two equations reduce to

Cods w—Dy A n—FoAs po1— Gy =0

C've D"y A s o= F uds noiH G w51 =0
CuB: w—DB, w—F,B; 1 —GuB w1+ H,=0
C'3Brw—D'wBiw—F wBr wei+ G 2B n1—H'n=0

(18)

from which A, ., A; 4, Br s, and B, , can be determined in
the form

A w=Kuds ot Lad s ne

Ay w=K' Ay st Loy ns

B w=K.B: -1 LuB wor+ M,
B,w=K'yB; u1+E' Dy +M,

(18)

If the coefficients A4, ., A4, By, and B, are known for
station n—1, they can be determined by means of equation
(16) for station n. 7

The coefficients at the first station (r=a) can be deter-
mined by inspection for both the solid disk and the disk
with a central hole. Inspection of equation (12a) shows that
for a solid disk in which both the tangential and radial
stressesat the first station are equal to ¢4

Ar,azAs,azl
Br,asz,aZO

For a disk with a central hole in which the radial stress
at the first station is zero and the tangential stress is o,q

Ar. a=Br,a:Bz,a=O
At.az‘l

From these known coefficients at the first station, the coefli-
cients at all other stations can be determined by successive
applications of equation (16). Once all the coefficients have
been determined, the unknown e¢,, can be determined.
The radial stress at the rim ¢,, is the centrifugal loading
of the blades

Ty, b:Ar, bo't,a+ Bn b
or

__O'r,b',_Br,b
L e

(17

fl;-_ b

where A,, and B,; are the coefficients for radial stress at
the rim. The radial and tangential stresses at all stations
can be obtained from equation (12a) after ¢,, and all the
coefficients have been determined.
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ILLUSTRATIVE APPLICATIONS

CASE I—ELASTIC-STRESS DISTRIBUTION IN SOLID DISE

The profile of a disk that is to be analyzed for stress dis-
tribution at a speed of 11,500 rpm and the temperature
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(e} Disk profile: Case I, solid disk; Case IT, disk with 1-inch eentral hole.
(b) Variation of temperature along disk radius.
(¢y Variation of Poisson’s ratio along disk radius.
{dy Variation of modulus of elasticity along disk radius.
(e} Variation of coefficient of thermal expansion along disk radius,

F1eURE 2—Disk profile, temperature distribution, and variation of physical properties of
disk material as function of radius, for Hllusirative problems,

distribution of the disk are shown in figures 2 (a) and 2 (b),
respectively. The first step in the analysis is to choose
an arbitrary number of stations along the disk radius. The
first station is chosen at a radius of about 5 percent of the
rim radius, the last at the rim. The stations need not be
equidistant; in faet, it is advisable to choose the stations
closely together where there is sharp change in disk contour,
in temperature gradient, or in variation of physical proper-
ties. In this case 18 stations were chosen, spaced relatively

-available.
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close together near the rim where the gradients in tempera-
ture and physical properties were high and near the center
for subsequent use of the same example to ilustrate the
effect of a central hole. When only a solid disk is considered,
no concentration of points near the center is necessary.
The various steps of the calculation are tabulated in table L,

The disk radius at each station is listed in column 1 of
table I. The thickness of the disk at each station is listed in
column 2. A sharp discontinuity in thickness, such as an
abrupt flange, should be faired in the disk contour and the
faired disk used in determining thickness. o

Ordinarily the density of the material is constant through-
out the disk, even over the wide range of temperatures. If
a faired disk has been used, however, the density of the
material in the faired region should be adjusted to produce
the total mass that actually exists in the region of each
station. Although a Hange does not reduce the stress at its
own region by increasing the area, its mass must be included
as it produces centrifugal stresses throughout the disk. The
corrected density at each station multiplied by the square
of the rotational speed is listed in column 3. In this case
no fairing was necessary; hence, all values of density are
equal.

Poisson’s ratio, listed in column 4, has only an insignificant
effect on the stress distribution and, because no accurate
data are available, & constant value of 0.333 may be used.
If accurate data on the variation with temperature of Pois-
son’s ratio are available, use of the exact variable values
presents no greater difficulty than use of a constant value.
The values of x used in this example are shown in figure 2 (¢},
and were for convenience obtained by the assumption of a
linear variation in p with temperature.

The modulus of elasticity at each station is listed in column
5. Variations in this property have a significant effect on

the final stress values and accurate data should be used if
For this example, E was arbitrarily assumed to
depend linearly upon the temperature, and the variation
along the radius is shown in figure 2 (d). In practical
computations, the true values of elastic modulus associated
with the particular temperature at each station may be used.

The coefficients of thermal expansion are tabulated in
column 6. These coefficients must be the average values
applicable to the range between the temperatures actually
existing and those at which there is no thermal stress. For
8 homogeneous disk in which there is no shrink fitting of one
part to another, the condition of zero thermal stress is at
room temperature. Engineering tables usually list the
average temperature coefficient of expansion between room
temperature and values of high temperature; the listed values
may therefore be used directly.

The difference between the actual temperature and the
column 7. In this case, the stress-free condition is at a room
temperature of 70° F. Column 7 is therefore obtained by
subtracting 70° F' from each of the values in figure 2 (b).
This column is of great significance in the case involving
shrink fits. '



TABLE I.—CALCULATION OF STRESSES IN DISK WITH NO CENTRAL HOLE

[ Engine speed, 11,500 rpm; operating temperature, 1270° F at rim, 670° F at center; average radial stress at rim, o, 1, 8500 1b/sq in.]
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052974 010504 *040368 7,780, 18 1085. 21 — 77576 : " 865, YL 1.45647 |~36,173 ' | —56, 610 38,541 | 4,564
| 058042 -012340 043644 9] 504, 30 1715, 12 ~L22112 70837 | “o%0des | 079008) - 70350 |6, 550.2 —33105 1.39585 | 190754 [~30,625 | —80) 011 19,012 {—26, 404
| .osor95 | .o172s0 ¢ | l0al193 10,676,30° | 1172.00 —1.10545 1.07180 | 1050242 | [13883'| (87970 |—4,919,0 |21, 564 T.57204 | 1.33536 | 52,182 | —98,250 18,804 |~42, 158
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DETERMINATION OF ELASTIC STRESSES IN GAS-TURBINE DISKS

The quantities (', to 1f’, are computed for each station as
indicated in columns 8 to 34 of table I. Values in each of
these columns can be obtained in one set of operations on a
standard computing machine. The method of obtaining
the data from the suitable previous columns is indicated at
the heading of each column.

Values in columns 33 and 34 must be simultaneously
computed. The first value for each of these columns is
unity. Subsequent values make use of the previously
obtained values in the same columns. Thus, to determine
the value for column 33 at station 2, column 27 at station 2
1s multiplied by column 33 at sfation i, and the product is
added to the product of column 28 at station 2 by column 34
at station 1. For example:

0.81902¢1.04+0.180983<1.0=1.00000

Columns 35 and 36 are likewise simultaneously computed.
The first value in each of these columns is zero and each
subsequent value is obtained from the previous values in
accordance with the symbolic notation given at the head of
each column. Thus, to obtain the column 35 at station 2,
column 27 at station 2 is multiplied by column 35 at station 1,
column 28 at station 2 is multiplied by column 36 at station I,
and the two products are then added to column 31 at
station 2

0.81902<X040.18098X0—67.192=—67.192

Column 37 is uniform for all stations and is obtained from
the expression

Ur.b‘“<35)b
(33)s

where o, , is the blade loading at the rim. The bladeloading
is obtained by dividing the total centrifugal force at the root
of the blades by the total rim peripheral area. In this
problem ¢, , is 8500 pounds per square inch; column 37 is
therefore,

8500 —(—72,896)
1.93765

=42,008 pounds per square inch

Columns 38 and 39 give the radial and tangential stresses,
respectively, at each of the stations. As indicated in table I,
they are obtained by routine multiplications and additions
of columns 33 to 37.

The radial and tangential stresses from columns 38 and 39
are plotted in figure 3. The stresses at the center of the disk
are taken equal to those at station a, which is % inch removed
from the center.

Because the method presented is the only one known to
the author that takes into account point-to-point variation
in Poisson’s ratio, the error involved in the assumption of a
constant value of this quantity as compared with the rigorous
treatment of its point-to-point variations is valuable to
determine. The broken-line curves in figure 3 show calecula-
tions for constant values of x=0.3 and p=0.5 compared
with the solid curves, which show the stresses for a contin-
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FiGoRE 3.—Stress distribution in solid disk of figure 2 computed with constant snd with
variable values of Poisson’s ratio,

uously variable value of u with temperature, as shown in
figure 2 and tabulated in column 4 of table I. The near
coincidence of these curves indicates that the assumption of
a constant value of p within the range of actual values results
in accurate final values of radial and tangential stresses.

The effect that difference in the number of stations has
on the accuracy of the results is shown in figure 4. Liitle
accuracy is gained by the use of additional points; as few
as six points in this particular case can yield accurate resulis
at a great saving in computing time.

CASE II-ELASTIC-STRESS DISTRIBUTION IN DISK WITH CENTRAL HOLE

A disk with a central hole is studied in a manner similar to
the solid disk except that the first station is taken at the in-
side boundary instead of at an arbitrary small distance as in
the solid disk. The choice of stations near the central hole
is, however, critical for this case. Stations should be taken
also at distances of 1, 2, 3, and 5 percent of the rim diameter
from the inside boundary of the disk. In order to illustrate
the procedure, the disk of figure 1 is again used but with a
central hole 1 inch in diameter, chosen so that station ¢ will
be conveniently located in the same place as station a
for Case L.

Columns 1 to 32 for the disk of figure 2 (a) with the central
hole are identical to the corresponding columns of table I
for the solid disk. In column 33 the entry for station @ is 0
instead of 1 as for the solid disk; otherwise, the procedure for
calculating columns 33 to 39 is the same as that of table I.
Table II gives the modified columns 33 to 39 that result from
changing the single first entry in column 33 and figure 5
shows a plot of the resulting radial and tangential stresses;
the curves marked “I18 stations” are the stress values for
this computation.
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The results of supplementary calculations using different
numbers of stations (fig. 5) indicate that considerable error
can result in the determination of the peak stress at the inner
boundary if an insufficient number of stations are chosen
near this boundary. A more judicious choice of stations for
the 6- and 10-station systems could produce more accurate
results than those shown; in the absence of experience in
choice of locations, however, it is better to choose a large
number of stations and insure accuracy.

A practical procedure used to reduce the amount of cal-
culation necessary to obtain the critical end stresses is to
calculate the stress distribution on the basis of a solid disk
using a few stations and then to modify the stresses in
the immediate vicinity of the central hole by the stress-
concentration factor characteristically introduced by the hole,
A comparison of figures 4 and 5 indicates that, with the ex-
ception of the region immediately adjacent to the central
hole, the stresses are similar for the cases of the solid disk
and of the disk with the central hole; this stress distribution
depends very little on the number of stations chosen. By
reference 3 (fig. 145), for example, the characteristic stress
concentration for a disk with a central hole of which the
diameter is one-twentieth of the outside diameter is about
2.0. From calculations based on different numbers of
stations, the caleulated average stress at the center of the
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solid disk (fig. 4) is 43,000 pounds per square inch. The
tangential stress at the inside boundary for the disk with the
central hole should therefore be 243,000=86,000 pounds
per square inch. The radial stress at a free boundary is,

TABLE II.—CALCULATION OF STRESSES IN DISK WITH
I-INCH CENTRAL HOLE

[Engine speed, 11,500 rpm; operating temperature, 1270° ¥ af rim, 670° T at conter]

32 33 3¢ 35 36 37 33 39
= N =g =
B tp| oty R i3 E| 8| B
Ta T & 3 T+ i+ * b +
st nd | w¥ ST AT e o~
5% | B | B | gz sEs) 2 o s
€] SRE | IRX | SxX | STB IRZEB| B | s | &%
SX| 58 88| 85| &l L) 7z &
) < < v@ \./3 g ) &
8 0 1. 00000 0 86, 668
2 0.18098 | 0.80981 15,618 70, 167
3 27748 | L7 23, 905 81, 474
4 33507 | .65110 , 308 56, 3314
5 - .37222 | .61330 — - 31,928 52,080
6 &= 41585 | . 356746 & = g 35, 469 48, 867
7 2 43012 | .54342 3 2 = 37, 195 48, 610
8 15 46208 | .51858 ) = @ 38,411 43,797
T 9 < 53705 | .52573 < < = 42,186 41,707
10 = 61976 | .56345 & & = 44,818 38, 705
11 4 6747¢ | . 59041 E 2 9 16, 365 37,628
12 Pt 73691 | .62330 pis P A 47,694 35,002
13 2 81907 | .66319 g g g 49, 525 31, 113
14 a 86439 | .60322 & & o 48, 206 26, 155
15 86126 | .70018 38, 471 4,814
16 . 67632 63141 18,690 | —25,188
17 76228 64940 13,884 | —41,908
b . 03617 70575 8,500 | —57,028
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FIGURE 5.—Effect on calculated stress distribution in disk of figure 2 with central hole of
various numbers of stations. (Location of stations shown on fig, 4.}



DETERMINATION OF ELASTIC STRESSES IN GAS-TURBINE DISKS

of course, zero. A curve faired between these boundary
values and the general curves of figure 4 would coincide very
closely with the 27-station result of figure 5.

CASE III-ELASTIC-STRESS DISTRIBUTION IN COMPOSITE WELDED DISKS

For some applications, turbine wheels must be fabricated
by welding parts composed of several materials. The
method of analysis presented is applicable to studies of
composite welded disks in which various alternatives of
boundary location and shrink interference can be Investi-
gated with few changes in the tabulated computations. The
procedure is illustrated for a typical application in which
the boundary location is constant.

The disk of figure 2 (a) is assumed to be made in two parts
with the boundary at the 6-inch station. Figure 6 shows
the two portions of the disk just before welding. The
heat-resisting outer portion is heated to 670° F while the
inner portion is maintained at 70° ¥. (In practice both
portions may be heated while maintaining a desired tempera-
ture differential.) At this temperature condition, an exact
fit exists between the mating tips of the two parts. The
wedge is then filled with weld metal.

The assumption is made that this temperature differential
between the two portions of the disk is maintained throughout
the welding process in making the caleulations. Any cooling
of the outer region prior to the placement of the weld metal
would produce a crushing of the mating tips and reduce the
effective amount of shrink. Localized effects of the weld
metal in producing residual stresses are neglected. The
caleulations are made as if the high-temperature alloy, hav-
ing full width at the mating face, is shrunk at 670° F onto
the full-width steel central portion. Table III shows the
essential tabulations for this case.

In order to insure accuracy, a few more stations than were
used in tables I and II have been chosen in the vieinity of
the boundary. The densities of the two materials are some-
what different. The quantities for g and E are the values
at the temperatures of figure 2 (b). The quantity AT at
each station is the difference between the existing tempera-
ture and the temperature at which there is zero thermal
stress. The temperatures of zero thermal siress ocecur just
before the shrink fit when the outer portion is at 670° F and
the inwer portion is at 70° F. Therefore, for the outer
portion 670° F is subtracted at each station from the tem-
peratures of figure 2 (b) and for the inner portion 70° F is

subtracted. The value of « at each station must be the
average o between the stress-free temperature and the operat-
ing temperature. At the rim, for example, an average
coefficient of expansion beiween 670° and 1270° F must be
used. The average temperature coefficient «;_; applicable to
the range between any two temperatures 7; and T; can be

found by
alngz'—Ol,1 Tll

A (T (I~ T

where &', and a’, are the average coefficients of thermal ex-
pansion between room temperature and the temperatures
T, and Ty, respectively, and 77, and 77, are the temperature
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The procedure of caleulating table I1I from column 8 on
is similar to that of table I. The final caleulated values of
stress are shown in figure 6.

Comparison of figures 5 and 6 shows that a shrink fit,
unless excessive, can have benefieial effects. The shrink fit
reduces the tangential tensile stresses that exist near the
central hole under operating conditions and also the tangen-
tial compressive stress at the rim. Compressive stresses at
the rim can be detrimental. If the elastic compressive siresses
exceed the yield strength of the material, plastic flow takes
place and a residual tangential tensile stress exists after

Jr/ :
o e

“-Space for weld metol

120x/03

0o

80

80F

40

P

-
L

Stress, lbfsq in,

20 —

Sfress
—— Rodial \
----- Tangential Y

_4’00

£ 4 & 8
FRadial distance, in.
FIGURE 6.—Stresses at running condifions of speed and temperature in composite welded

disk. Temperature of operating rim section during welding, 670° F; temperature of cen-
tral section, 70° F.

vy

operation. Because the region of the rim is & stress-
concentrated area as a result of the blade attachments, even
relatively small residual tensile stress may cause cracks.
The shrink fit removes the high tensile stress at the center

The boundary is at a lower running temperature and has no
stress-concentrating effects of the blade attachments.

differences between T and T3 and room temperature.

The optimum amount of shrink, however, is fairly critical.
Probably the shrink of the illustrative example is excessive.

and the high compressive stress at the rim but introduces a )
high tensile stress at the boundary of the two fitted regions.



TABLE III.—CALCULATION OF STRESSES IN SHRUNK DISK

[Engine speed, 11,500 rpm; operating ternperature, 1270° F at rim, 670° I al center; shrinking condition, 670° F for rim portion, 70° F for eentral portion]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
] X — - -~ o
& | 1t s x & . g 5 o e % =
= | AT 2 £ T ) +1 T s 151 z4 X s Sy
! . ] OX 12| RX |egE | X a8 MX ¥ X ia & &% g
s | & £ & 5 K 3 a = 2 & g & 24 =) R = oo ) o =
a | 0.500 | 4,375 26. 03108 7 061)(10«“ 600 | 218751 .. | . | ae.o.o |, L038.43 [ oo | ... {0, 088462<10~0 0 olamxmﬁo 0.1033863X10-8 | wmcoccomec | mmmeccemes ] acasenos
2| .62 | 4.375 26.0 061 600 | 27344 | 0.0825 | 027344 2,704, 56 169.04 | .03%492 . 082709 0. 0061693109 (0. 006462X10-8 | 0. 018400>¢10-9
8] .750 | 4.375 26.0 7 031 600 | 3.9818  .0625 | 27344 251 50 | . 0689247 .004308° ., | . 005169 017539
4| 875 | 4.375 260 7.061 | 600 | 3.8281 | .0625 27344 ‘ - 059078 , 003692 £ 004308° ‘.016926
51 1.000 | 4,375 26,0 7.061 600 | 4.3750 | .0625 27344 1051693, .00323% | . 003602 . 016462
6 [ 1125 | 437, [ 26:0 7. 061 600 | -4-9:08 L0625 | 27344 1045949 1002872 003231 .. . 016103
7.1 1.260 | 4,375 26; 0 7.061 600 | 5.4688 | .08256 | 27344 | . 041354 © 1002585 ; 002872! . 015818
8| 1.875 |"4.375 260 7,061 600 | 0.0156 1 .0625 | 27344 | 037595 002350 {op2s8G @ 1 - 015881
.| 1.500 | 4,375 26.0 7. 061 600 | 65025 0825 [ .27344 |. 034462 (002154 , 002350 ., L 015385 -
1 26:0 7. 061 600 | 7.6563 | .1250 54688 029539 003602 . 004308 1016023
2 26,0 7. 061 601 | 87500 ..1250 54688 L1 025846 1003231 . 003692 . 016462
26,0 7.067 604 | 20.225 2500 | 1.02250 020677 | 005160 S 006462 . 01§400
25,9 4 12072, 4 607 | 14520 | 2500 | 06000 L 017297 | 004324, : ‘ . 017606
507,345 [ 25,8 11 |'7,088 | 6141 13:855.)| 1,2600 | 188250 Y i | £ 014895 4003724 i - 017096,
964.97'f 346 | 25.7 7.100 623 | 13.200 | 2500 81875 013093 .003273: ! . 0167860
964.97'{ 347 | 25,6 7,139 638 | 13.805 | . 2500 74250 |.’ \ . 011692 1 .002923 ., | .o003273 ' .01(3;&77
| 964.97 | .343 | <25.4 7172, 657 | 13, 400 2500 67000 j . 010614 .002664" | .002023" - 016355
| 984.97 | ,350 | 25.0 7,211 654 | 13,046 2500 59300 133, 892 : ! - . 0098182 . 002454 . 002664 ", 016454
. 904.97 | ,352 | 24.0 7,287 700 | 13,160 °| L1875 [ . 42000 143, 846 26,971 040650 . 0093547 001754 © | 001841
200[ 6.000 | 2.210 | 1030:21°| .410 | 26.7 '] 7981 | 118 | 13. 260 0625 [ 13812 156, 570 9,785.6 | .037458 .0088015 ¢ © |..000550 + | | .000585 ¢ -
21| 6,125 | 2.190 | 1030.21 | .410 | 26,6 8002 ' ;{129 |'13.414 | .0925 | 13588 | 166, 605 105413 037594 (0086544 000541 . | 000580 :
22,1 6.500 | 2.160 | 1030.21.§.410 | 26.4 8055 163 | 14.040 1876 [ 540500 |- | 178,658 | 33,498" | 087870 (082168 001541 .001623
23] 7.000 [ 2,155 | 1030.21 | .410 } 25.9 8,127 220 | 15. 085 2500 | . 53875 [+ . 108, | 202,797 50, 699 5038610 . 0077771 . 001944 . 002054
24 1 7.500 | 2.700 | 1030.21 | .410 [ 25,3 8,231 280 | 20,250 | .2500 | 67500 | 53875 | 156,468 | 265, 248 06,312 . 039526 . 0074809 . 001858 . 001944
25:( 8.000 | 2,700 | 1030.21 | .410 | "24.5 2,380 375 1 21,600 [ ©.2500 | 67500 |. . 67500 |, 178,020 334, 488 83, 622 . 040816 . 0071988 . 001798 - .001858
261 8.250 | 2610 | 1080.21 | (410 | 24.1 8,470 424 | 21,533 °| ,1250 | .32625 | .33750 | 183,017 361, 037 451130, - | 041494 £ 0070916 .000886 - : 000899,
2718500 | 2,880 | 1030.21 | .410 | 235 8,570 477 | 20. 230 1250 | 29750 |, ..320625 | 177155 360, 172 45,022, 042553 bl 017447 0070588 . . | .000882 . -000886
28} 8 750 | 2,145 | 1030,21 | \410 | 229 [ 8678 | 536 18:769 /| 1250 | 26813 [ 29750 (109, 101 346, 346 1| 43,293, 043668 1 |14 017904 .Q070368 { 000880, . . |:.000882, 1 |
b'| 9.000 [ 1.910 | 1030.21 | .410 | 221 &, 800 600 | 17.190 1250 23875 [, 26813 159 384 328,575 .| 41,072 . 045249 '+ 018552 . 0070880 .000886 . . 000880’ ¢
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 29
o 1 - : g’i & =
J ﬁ ~ =L, L e . T I A R o Tk o8 8
- L I - LT, Lok | s oy cia [ P LT o3 + +
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3 O N T 4,238, 6006000 oeereiore | memcememcon | cieno loanann [ R U, 1. 00000 Q 0 "o | 46,473
2 [0. 048631106 [0, 006769 X108 |0. 037000><10~5 , 238, 60 0005100 —0. 11427>10-#| 0. 81804 0. 18008 |0:19026 |0 8097’7 Taasis | 8700 | . usoos |l sper7 —04.548)  —27.219 8,348 | 37, 605
3 | . 042770 . 003002 . 033203 , 235,60 0.00 —. 13555 843532 | 15344 | . 15886 | 84431 —79. 855 —32.542 1 . 277451 .70098 | ~138,17 @5, 681 12,756 | 52,929
4| ,042154 . 008923 034154 4, 236, 60 0.00 —~. 15674 86091 | . 13312 | .13635 | .86867 | —04,248] —37.836 1 33504 .65102 | 22277 | ~113.40 15,348 | 30,141
5| .041693 . 009539 L 034770 4, 236. 60 0.00 —, 17790 88250 | 11753 | .11965 | .B3038 | —100.18 |  —43.110|..87210 | 61823 | ~319.10 | —169.60 18,978 | 28,820
6 | .041334 . 010000 . 035231 4, 236. 60 0.00 —. 19904 89430 [ ,10518 | .10667 | .80832 | —124.14 —48.364 | .39754 | .s8751 | —427,51 —233.901 18,047 | 27,069
7| .041047 010359 . 035500 4,236, 60 0.00 —. 22015 | 90432 | 095188 | . 096268 | 90874 | —130.13 —53.611 | .41583 |- 56022 | . ~548.22 |  —306.16 18,787 | 26,147
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14 [ . 042484 008053 084283 4,348, 96 58. 26 —. 50080 . 94451 | 13936 | ,18922 | .8u311 |—1,661,5 | —L1,992.9 .58226 | 55008 | —6,049.4 | —b,711.3 = 21,000 | 19,853
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19 | .042404 012159 033139 5,166, 50 234.18 . 55120 . 99420 | . 083281 | ,039872 | . 02386 |—2,253.0 | —8,376.0 86180 | 08610 [—24,017  |~30,805 S 116,033 [ 1,645
20 | . 038003 013724 . 040085 41, 76 —4,224, 70 —, 50172 90303 | . 021634 | . 054408 |1. 05332 421.82 | 111,344 .87085 | . 78714 |—24,0 77, 280 16,378 | 118, 860
21 | . 038185 014806 086903 1,032, 26 © 8050 —, 50035 80 | 020358 | 025441 | 97617 | —808.94 | —2,709. 5 L 8TT04 |, 79058 [—23, 063 72,116 17,008 | 108,
22 | . 039420 ", 013791 035971 1,312.98 280. 7 —, 54854 95727 | L 056272 | . 064700 | . 93688 |—2,624.1 | —8, 2567, 2 88405 1 . 79788 |—20, 644 57, 815 20, 440 [ 94,872
23 | . 040554 013476 035825 1,787.94 474. 93 —, 60218 93347 | 068418 | 076823 | .01338 (—3,830.3 |—13.895 87979 | . 70623 (18,154 37,826 21,733 | 74,829
24 | . 041384 . D13886 036660 2,378, 76 590. 82 —, 82583 74459 | .058967 |~ 010530 | .91086 |—3,805.9 [-—15,938 70044 | 71599 {15,013 18,718 16,638 | 51,992
25 | . 042614 " 014348 037663 3,145, 88 767.12 —, 90795 03075 | 059684 | 071982 | . 00980 |—4,495.0 |—19,958 70007 | . 70189 18,832 ~4, 070 14,244 | 28, 540
26 |, 042380 . 015836 . 030917 3, 591.28 445,40 —. 00673 1.00380 | . 030138 | ;050314 | . 95461 [—2, 260.86 [—11, 468 72438 | .70530 |—20,796 ' |—16,278 12,800 | 18, 501
27 | . 043435 . 016128 . 040508 4,087.89 498,61 —, 87324 1.08553 | (030082 | . 078385 | . 94760 |—2, 408.6 |—I2,450 79356 | .72518 {25,057  |—29, 508 1,822 | 4,107
28 |, 044543 ., 018565 041671 4,651, 41 553, 52 ~. 83103 1.07904 | ,020301 | .083134 | . 94781 |2, ou2. —13, 705 877 75820 {—30,407 |43, 751 10,378 | —8, 7438
b | . 048135 L 017024 042788 5, 280. 00 628. 50 . 78842 | 1. 09313 | . 028646 | . 001562 | . 93052 |—2,5908.7 |—14,718 . 08091 | 78809 |—37,086  |—55, 607 500 |21, 682
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DETERMINATION OF ELASTIC STRESSES IN GAS-TURBINE DISES

There is no need to reduce the stresses at the hole and at the
rim as much as shown in figure 6 at the expense of such a
high stress at the boundary. An additional caleulation can
readily be made by using a smaller temperature difference
of shrinking than assumed in this calculation. Only col-
umns 6, 7, 24, 31, 32, and 35 to 39 are affected by any change,
and the redistribution of stress can be caleulated very rap-
idly. Thus, a more suitable shrink fit can readily be found.

CASE IV—CHECK ON ADEQUACY OF METHOD

Checks on the adequacy of the methed were obtained by
comparing the results of finite-difference calculations to
theoretically correct results in several cases where the latter
could be obtained. In one case a parallel-sided disk was
studied. The conditions of operation are shown in figure 7;
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Fourre 7.—Comparison bet ween theoretical and finite-difference-solution stresses in parallet-
1sided disk of 20-ineh diameter rotating at 10,000 rpm with temperature gradient that varies
as fourth power of radius from 600° F at center to 1206° F at rim. E, 30X1(° pounds per
square inch; e, X105 (in [(in }(°F)); g, 0.3.
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the circles and squares show the radial and tangential
stresses as determined by the finite-difference method,
respectively; and the solid lines show the theoretically
correct stresses obtained by rigorous solution of equations
(1) and (7) for this case in which E, «, and p are constant.
This correlation is seen to be very good. The maximum
deviation occurs at the boundary of the central hole where the
difference between the tangential stress as computed by the
finite-difference method and the theoretically correct value
is about 2 percent. The average deviation between the
theoretical and finite-difference stresses throughout the disk
is less than £ percent. Checks on a solid disk produced
closer agreement, even when a small number of stations was
used. A check on & disk of uniform strength produced
results differing from the exact solution in the order of +4
percent of the theoretical stresses throughout the entire disk.

CONCLUSIONS

The finite-difference method of calculating siresses in
rotating disks has been applied extensively to various types
of turbine disk under different conditions of constant tem-
perature or with a temperature gradient. The procedure
was found to be convenient and rapid. Where checks were
available, the results showed a high degree of accuracy.

FrigeT ProrursioN RESEARCH IL:ABORATORY,
NaTioNaL ADvisort COMMITTEE FOR AERONAUTICS,
CrevELaxD, Omrio, February 27, 1947.
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